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Diffusion in discrete ratchets
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The phenomenon of noise-induced transport in ratchet devices offers an explanation for directed motion on
the molecular scale observed in many biological systems. Net transport through a series of discrete states,
occurring in cyclic processes or reactions, can be related to widely investigated continuous ratchet models in
the context of thermally activated transitions. The transport process can be described effectively in terms of
two characteristic coefficients: velocity and diffusion. Their relation to model parameters and limitations for
the ratchet mechanism are discussed in this paper. As an application we consider a four-state model for uphill
transmembrane transport and compare theoretical results with existing data from a related experiment.
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I. INTRODUCTION

The phenomenon of noise-induced transport offers an
planation for directed motion observed on the molecu
scale. It has been mainly discussed in the context of biolo
cal systems, e.g., actin/myosin@1#, kinesin/microtubules@2#
or transmembrane transport@3#.

The two indispensable prerequisites for this molecu
transport mechanism are~unbiased but! nonthermal fluctua-
tions and a broken reflection symmetry. Whereas the
requirement becomes transparent in connection with the
ond law of thermodynamics@4# the second is needed to s
lect a preferred direction of net transport. The broken sy
metry is usually introduced by choice of a periodic b
asymmetric potential, a so-called ratchet or washboard
tential.

Depending on the system under consideration the coo
nate may be a spatial axis or a reaction coordinate. As
example for the latter case we mention the transport o
substance~ion! through a membrane. The catalyzing mac
molecule is apt to conformational changes and possesse
ferent binding sites. This situation has led to the formulat
of a four-state model@5# and underlines the practical re
evance of discrete ratchet models.

Transport in spatially continuous systems can be
scribed by means of a Fokker-Planck equation@6#. Within
this framework the central quantity of interest, the station
current, can be formulated rigorously. However, analytic
sults can be found for a few examples only. On the ot
hand, for a discrete-state model, and especially for chem
kinetics, a formulation in terms of rate equations is possib
In mathematical terms this involves simple linear algeb
hence, allowing for analytical expressions quite genera
Both descriptions are connected by Kramer’s theory rela
rates to the shape of potentials@7#. It should be noted that the
kinetic description is only valid in some appropriate ad
batic limit.

So far, most investigations have concentrated on qua
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fying and comparing currents that can be achieved when
ing different mechanisms to drive the system out of equil
rium: rocking ~e.g., @8–10#! or flashing ~e.g., @11,12#! the
ratchet, applying dichotomic~e.g., @11,12#!, harmonic@13#,
or Ornstein-Uhlenbeck~e.g., @8,14,15#! noise, including
~e.g.,@10,16,17#! or ignoring inertia~the majority of publica-
tions!, etc. Moreover, the phenomenon of current rever
has attracted much interest~e.g.,@16–19#!.

In contrast to these efforts, only a few authors@10,20,21#
have payed attention to diffusion accompanying the trans
process in a ratchet. In@10# the authors considered a period
cally rocked, purely deterministic ratchet including inert
effects. Their system possessed regular or chaotic attrac
depending on the system parameters. In the chaotic reg
the asymptotic distribution tended to a dispersing Gauss
just as for ordinary diffusive systems. This motivated an
fective description based on a cumulant expansion w
dominant corrections accounted for by a universal sca
law.

The same observation of an effective Gaussian was
the basis for an envelope description applied to a dichoto
cally flashing overdamped ratchet@21#. Explicit expressions
for the velocity and effective diffusion coefficient could b
derived; however, they still required numerical evaluation
involved functions. In this paper we will apply the sam
approach adapted to a discrete three-state model first in
duced and analyzed in the context of various flashing mo
@22#. The discrete system has the advantage that velocity
diffusion coefficient can be explicitly related to system p
rameters. Thus we can study their analytic dependence
the system parameters. We should mention that the inve
gation of velocity and diffusion constant in a periodic on
dimensional hopping model was done earlier@23# in a dif-
ferent context.

Diffusion counteracts the desired transport. To illustra
this statement consider some molecular system that requ
the cargo to be delivered at its destination reliably, i.
within a small time interval. In this case large diffusio
means large variance of the times of arrival, i.e., low reliab
ity. As another example we might think of some separat
device. Here, diffusion affects the efficacy of the separat
1304 © 1999 The American Physical Society
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PRE 60 1305DIFFUSION IN DISCRETE RATCHETS
mechanism. Recently the use of two-dimensional sieves
proposed for a continuous sorting of differently sized m
ecules~DNA fragments! @24,25#. Lateral diffusion, i.e., in a
direction perpendicular to electrophoretic drift, effects t
separation; however, it also limits the range of sufficie
resolution.

The competition between driftv and diffusivity D in
advection-diffusion problems is often expressed by a dim
sionless number, the Pe´clet number,

Pe5
uvua
D

. ~1!

Here a is a typical length scale, in our case the length o
single ratchet element. The larger the Pe´clet number, the
more net drift predominates over diffusion.

To discuss this point quantitatively we consider the si
ation sketched in Fig. 1~cf. Fig. 4!. Net transport moves
particles to the right. After the timet l5 la/v the peak has
movedl units to the right. The probability to find the partic
still at the starting point or even left of it is given by th
expression

P~x,0,t l !5
1

A4pDt l
E

2`

0

expS 2
~x2vt l !

2

4Dt l
Ddx, ~2!

5
1

A2p
E

2`

2
vt l

A2Dt l
expS 2

y2

2
D dy, ~3!

5FS 2A l

2
PeD . ~4!

Referring to the statements above and to Sec. III we h
made use of the fact that the distribution effectively becom
a dispersing Gaussian. For Pe approaching zero the pa
will be found on the left side with probability 0.5 wherea

FIG. 1. After the timet l5 la/v the peak of the distribution ha
shifted l units to the right. The probability that the particle still
left of the starting point, i.e.,P(x,0,t l), corresponds to the shade
regions. The distributions are shown for a large~top! and a small
~bottom! Péclet number.
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for large Pe this probability will become vanishingly sma
~cf. Summary and Conclusion!.

The break-even point beyond which drift wins over diff
sion defines a critical lengthLc52D/v. Demanding this
length to be not larger than the length of a ratchet unia
requires Peclet numbers not smaller than 2.

II. A MINIMAL DISCRETE RATCHET MODEL

As a starting point for discrete ratchet models we consi
Fig. 2. It comprises three states interconnected by transit
w(n˜m,s) ~with n,m51,2,3 ands521,11). It is mini-
mal since the ratchet mechanism requires spatial asymm
which cannot be devised with less than three states.
linear ordering indicates the chainlike character with the c
nection between 1 and 3 accounting for its periodicity. D
to flashing there exist two disjoint transition sets represen
by the upper (11) and lower (21) ladder. The switching is
modeled by a dichotomic process~random-telegraph pro
cess! with g denoting the average switching rate. The prob
bilistic evolution of the system is described by a related m
ter equation of the form

] tP~n,s,t !5@W1G#P~n,s,t !. ~5!

The master matrix@W1G# has dimension 636 and is com-
pound of lateral transition ratesw(n˜m,s) ~in W) and the
switching rateg ~in G).

The dichotomic switching provides the basic mechani
to drive the system out of equilibrium. The second prereq
site for a nonvanishing net current, namely, the broken
flection symmetry, is induced by appropriate choice of tra
sition rates. In the context of thermally activated transitio
we have to endow a modified sawtooth potential with me
stable states. This is done by deforming the potential giv
rise to three local minima each separated from its neighb
by barriers, cf. Fig. 3. In the context of Kramer’s theory@7#
the parametersDU0 ,U1 ,U2 ,U3 ,DU12,DU23, and DU31
can be chosen to yield

k5w~1˜2,11!5w~2˜3,11!

5
1

w~2˜1,11!
5

1

w~3˜2,11!
, ~6!

k25w~1˜3,11!5
1

w~3˜1,11!
, ~7!

15w~n˜n61,21! ~8!

FIG. 2. The discrete three-state ratchet model.
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1306 PRE 60JAN A. FREUND AND LUTZ SCHIMANSKY-GEIER
~cf. Fig. 3!. We specify rates in this way for the sake
computational convenience and in order to be compat
with existing literature@22#.

III. EFFECTIVE DESCRIPTION OF NOISE-INDUCED
TRANSPORT

Considering transport in a ratchet potential one wants
quantify the probability that the particle has moved so
units to the left or to the right of the initial unit. This mean
that one is interested in a description on a coarser scale
mulated through an envelope function. As already mentio
in the introduction it was observed@10,21# that the evolution
of the probability envelope effectively becomes that of a d
persing Gaussian, see Fig. 4. Before approaching this no
in a systematic way~cf. @21#! let us introduce some notation
By P we denote the envelope function whereas the distri
tion defined on the refined scale will be denoted byP. The
observation of a spreading Gaussian means that we hav
following equation for the envelope:

] tP~x/l,t !5]x@~2v1D]x!P~x/l,t !#, ~9!

with l denoting some length scale, which is large as co
pared to the lengtha of the asymmetric unit. Note that a
expansion in powers of spatial derivatives thus correspo
to an expansion in powers of 1/l. Hence, we can understan
Eq. ~9! as a truncated series expansion. We have introdu
two effective coefficients, namely, the velocityv and the
diffusion coefficientD. We want to relate them to the param

FIG. 3. The continuous linear on-off potentials~dashed! are en-
dowed with a well structure~solid!. By an appropriate choice o
barrier heights it is possible to map the continuous system sh
left to the rate system sketched schematically right.

FIG. 4. The probabilistic evolution of an ensemble in a ratc
potential is reduced to a consideration of a time-dependent e
lope. The latter can be effectively described by a dispersing Ga
ian moving with constant drift.
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eters determining the ratchet system, i.e., to the flipping
g and to the parameterk coding the shape of the asymmetr
unit. These parameters enter the description through the
namics ruling the evolution ofP, which is nothing but the
master equation~5!. Consequently, a connection betweenP
andP will yield the desired relation. This connection is give
by the following gradient expansion:

P~x,s,t !5 (
n50

`

p(n)~x,s!]x
nP~x/l,t !. ~10!

It involves an infinite set of periodic functionsp(n) of period
a. Small n terms describe the smooth components a
hence, one would expect only the first functionsp(0), p(1),
and perhapsp(2) to be involved in the envelope descriptio
Indeed, this is the case as can be seen when inserting
ansatz~10! in the master equation~5!. Equating terms of
order 1/ln yields

@W1G#p(0)50, ~11!

@W1G#p(1)52~v2V̂!p(0), ~12!

@W1G#p(2)5~D2T̂!p(0)2~v2V̂!p(1), ~13!

with V̂ andT̂ being two operators~matrices! involving rates
w(n˜m,s) ~cf. the Appendix!. Equation~11! reveals that
p(0) is the stationary solution of Eq.~5!. Taking traces and
obeying correct normalization,

tr$p(n)%5 (
s521

11

(
i 51

3

p(n)~ i ,s!5dn,0 ~14!

yields the desired relations for the effective coefficients:

v5tr$V̂p(0)%, ~15!

D5tr$T̂p(0)%2tr$V̂p(1)%. ~16!

The fact that the functionp(2) is not involved becomes trans
parent when taking the traces of Eqs.~11!–~13!. Due to the
norm-conserving property of the operator@W1G# traces of
the left sides vanish identically. The functionsp(0) andp(1)

are achieved solving Eqs.~11! and ~12!, respectively.
In @21# where a continuous ratchet model was investiga

the traces required integration and scalar products with
continuous functionsp(0) andp(1). A quantitative evaluation
of these expressions, hence, required numerical computa
In contrast, in the discrete ratchet model all manipulatio
necessary to yield Eqs.~15! and ~16! are done in the frame
work of linear algebra. They can be performed by an al
braic computer program likeMAPLE. The resulting expres-
sions are rather long and cannot be simplified. However, t
still grant the benefit of being analytically exact and explic
In particular, exact limits can be evaluated.
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PRE 60 1307DIFFUSION IN DISCRETE RATCHETS
In the remainder of the present paper we will visual
and discuss the dependence ofv andD on the parametersg
andk of our discrete ratchet model. In the following we s
the unit lengtha51.

IV. DRIFT VS DIFFUSION FOR THE MINIMAL
DISCRETE RATCHET

In this section we apply the method to the flashing thr
state ratchet sketched in Fig. 3. The alternation betw
asymmetric concentration of probability in the~on state! and
‘‘free diffusion,’’ i.e., over the barriersDU0 ~in the off
state!, gives rise to a net transport directed to the left, i.e.,
net velocity is negative. As a generic feature of the ratc
mechanism the net current becomes extremal for an o
mally choseng; the flashing rate has to be tuned to ma
mally experience the asymmetry between motion to the
and to the right. The important question is now whether la
net currents can be achieved simultaneously avoiding la
diffusion. To this end we consider how the diffusion consta
D(g,k) varies with the flashing rateg and plot-related val-
ues ofv and D in Fig. 5. The tendency to simultaneous
attain extremal values clearly can be seen from the diag
structure of the curves.

In Fig. 6 we depict the related Pe´clet numbers Pe. We se
that Peclet numbers never reach values of the order of 1.
basic example clearly demonstrates that diffusion effects
far from being negligible~cf. the discussion in the Summar
and Conclusion!. In passing we mention that the same qua
tative result was found in the analysis of a discrete rock
ratchet.

V. APPLICATION TO TRANSMEMBRANE TRANSPORT

In this section we want to show how this analysis appl
to a realistic biochemical system. The active transport
substances~ions! through biomembranes has been describ
successfully in terms of a four-state model@5#. The four
states are defined through combining some electroconfor
tional polarity of a membrane macromolecule~pointing ei-
ther inside or outside! with the bound or dissociated states

FIG. 5. The relation between velocityv and diffusion coefficient
D for the flashing ratchet when varying the flashing rateg for three
different asymmetry parameters:k50.1 ~dashed!, k50.2 ~solid!,
andk50.5 ~long dashed!.
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the substance. Applying an external varying field induc
transitions between the conformational states of the ma
molecule, thus creating and maintaining a nonequilibriu
situation. The indispensable asymmetry comes in thro
different affinities on both sides of the membrane. In th
way the uphill transport, i.e., against a concentration gra
ent, can be modeled by a discrete four-state ratchet. Bes
experiments with oscillating fields@26,27# there was also an
experiment with a randomly fluctuating electric signal~ran-
dom telegraph noise! @28#. The influx, i.e., the number o
particles (86Rb) crossing the membrane~of human erythro-
cytes! against a concentration gradient, was measured
function of the applied biasF ~related to the electric signa
amplitude! and mean switching rateg. Nonmonotonic be-
havior with respect to both parameters was found@29#. The
measurement data could be reproduced by simulations b
on a four-state kinetic description~for a sketch of the mode
we refer to Fig. 3 of@28#!.

With the rates given in@28# ~specified there in the legen
of Fig. 3! we can compute the net velocity together with t
diffusion coefficient. The results are shown in Figs. 7 and
for varying biasF and g, respectively. The unit forv was

FIG. 6. The Pe´clet number Pe for the flashing ratchet whe
varying the flashing rateg for three different asymmetry param
eters:k50.1 ~dashed!, k50.2 ~solid!, andk50.5 ~long dashed!.

FIG. 7. The effective coefficientsv ~dashed! and D ~solid! for
the four-state electroconformational coupling model specified
@28# as a function of varying external biasF.
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1308 PRE 60JAN A. FREUND AND LUTZ SCHIMANSKY-GEIER
chosen asattomol of ion substance per erythrocyte per ho
to allow for comparison with the cited literature@28#. The
unit for D follows in accordance. As before, we find th
diffusion and velocity are increasing simultaneously. The
lated Peclet numbers never reach the value 1.5.

VI. SUMMARY AND CONCLUSION

We have analyzed net transport in discrete ratchet mo
relevant for~biochemical! cyclic reactions moving ‘‘uphill.’’
Asymmetry was reflected by asymmetric rates whereas n
equilibrium was prepared by switching between~two! differ-
ent sets of transition rates. A description in terms of a d
persing probability envelope yielded expressions for t
effective coefficients, drift velocityv and diffusivity D, as a
function of given rates. We applied the theoretical results
discrete versions of a flashing and a rocking ratchet. Fina
as a rather practical application, we considered diffusion
companying active transport of substances across a biom
brane.

As a general feature we found that maximal drift is link
with rather high diffusion. The limitation diffusion impose
on the transport efficiency can be considered quantitativ
in terms of the dimensionless Pe´clet number Pe. As ex
plained in the Introduction, for net drift to overcome diffu
sion at a distance of one unit Peclet numbers should no
smaller than 2. In contrast to this demand we found Pe
numbers as small as 0.15 for the flashing ratchet, 0.6 for
rocking ratchet, and 1.5 for the transmembrane model.

A more sophisticated interpretation relates Pe´clet numbers
to the probabilityP(x,0,t l) that particles, initially located
at x50, never move to positive valued locations~the pre-
ferred side! within the timet l5 la/v. Of course, with elaps-
ing time t l this probability~cf. Fig. 9! will diminish. Never-
theless, small Pe´clet numbers stir the question wheth
ratchets really work. This criticism even holds true wh
considering a collection ofN independent ratchets. Howeve
synchronization effects induced by an external signal@30# or
by a feedback mechanism@31# may generate coherent beha
ior and thus might yield an effective suppression of dete
rating diffusion.

FIG. 8. The effective coefficientsv ~dashed! and D ~solid! for
the four-state electroconformational coupling model specified
@28# as a function of varying mean switching frequencyg.
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APPENDIX

Here we derive explicit expressions for the operatorsV̂

and T̂ involved in Eqs.~12!–~16!. We start by inserting Eq
~10! in the left side of Eq.~5!. Making use of Eq.~9! yields
a power series

(
n51

`

cn

1

~lDx!n

]nP~y,t !

]yn
uy5 x/l , ~A1!

with c152vp(0) and cn5Dp(n22)2vp(n21) for n>2 and
Dx5a/3. The right side of Eq.~5! explicitly reads

@W1G#P~ i ,s!ªw~ i 21˜ i ,s!P~ i 21,s,t !

1w~ i 11˜ i ,s!P~ i 11,s,t !

2@w~ i˜ i 21,s!1w~ i˜ i 11,s!#

3P~ i ,s,t !2g@P~ i ,s,t !2P~ i ,2s,t !#.

~A2!

Inserting the gradient expansion~9! here and expanding
P(y61/l) aroundy5 i /l also leads to a power series

(
n50

`

c̃n

1

~lDx!n

]nP~y,t !

]yn
uy5 x/l , ~A3!

with

n FIG. 9. The probabilityP(x,0,t l) that a particle, initially lo-
cated atx50, never crosses to the preferred side within the ti
t l5 la/v strongly depends on the Pe´clet number Pe.



PRE 60 1309DIFFUSION IN DISCRETE RATCHETS
c̃n5(
l 51

n

@~21! lw~ i 21˜ i ,s!p(n2 l )~ i 21,s!

1w~ i 11˜ i ,s!p(n2 l )~ i 11,s!#

3
~Dx! l

l !
1@W1G#p(n)~ i ,s!. ~A4!

From this we can readily write down Eqs.~11!–~13! and
define the operatorsV̂ and T̂ through their action on the
functionsp(n) as
a

ff

n

v

-

s

e
B.
V̂p(n)~ i ,s!ª@w~ i 21˜ i ,s!p(n)~ i 21,s!

2w~ i 11˜ i ,s!p(n)~ i 11,s!#Dx, ~A5!

T̂p(n)~ i ,s!ª@w~ i 21˜ i ,s!p(n)~ i 21,s!

1w~ i 11˜ i ,s!p(n)~ i 11,s!#
~Dx!2

2
.

~A6!
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